Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bio-based compostable starch aerogels have significant potential as a sustainable alternative to traditional polymer aerogels across various applications. However, they suffer from very significant shrinkage, shown in published work as 40–50% using existing processes. We hypothesized that the shrinkage is largely caused by pore collapse through the solvent exchange process, during which the water used to fabricate the starch matrix is replaced with ethanol. To mitigate this issue, this work introduces two strategies: (1) implementing a deep-freezing protocol (DFP) prior to the solvent exchange, followed by pure ethanol solvent exchanges instead of water/ethanol mixtures, and (2) incorporating chitin as a structural additive. As a baseline, we fabricated potato starch aerogels (PSAs) using conventional processes of mixing, heating, and retrogradation. By applying a DFP before pure ethanol exchanges, shrinkage was reduced from 44% to 10% in pure PSA samples. Furthermore, the addition of chitin reduced shrinkage to 8% in potato starch-chitin aerogels. Porosity, density, surface area, pore size distribution, thermal decomposition temperature, thermal conductivities, and scanning electron microscopy images demonstrate a correlation between reduced shrinkage and desired thermal material properties.more » « lessFree, publicly-accessible full text available June 1, 2026
-
The development of thermoplastic starch (TPS) films is crucial for fabricating sustainable and compostable plastics with desirable mechanical properties. However, traditional design of experiments (DOE) methods used in TPS development are often inefficient. They require extensive time and resources while frequently failing to identify optimal material formulations. As an alternative, adaptive experimental design methods based on Bayesian optimization (BO) principles have been recently proposed to streamline material development by iteratively refining experiments based on prior results. However, most implementations are not suited to manage the heteroscedastic noise inherently present in physical experiments. This work introduces a heteroscedastic Gaussian process (HGP) model within the BO framework to account for varying levels of uncertainty in the data, improve the accuracy of the predictions, and increase the overall experimental efficiency. The aim is to find the optimal TPS film composition that maximizes its elongation at break and tensile strength. To demonstrate the effectiveness of this approach, TPS films were prepared by mixing potato starch, distilled water, glycerol as a plasticizer, and acetic acid as a catalyst. After gelation, the mixture was degassed via centrifugation and molded into films, which were dried at room temperature. Tensile tests were conducted according to ASTM D638 standards. After five iterations and 30 experiments, the films containing 4.5 wt% plasticizer and 2.0 wt% starch exhibited the highest elongation at break (M = 96.7%, SD = 5.6%), while the films with 0.5 wt% plasticizer and 7.0 wt% starch demonstrated the highest tensile strength (M = 2.77 MPa, SD = 1.54 MPa). These results demonstrate the potential of the HGP model within a BO framework to improve material development efficiency and performance in TPS film and other potential material formulations.more » « less
-
This work aimed at synthesizing MoO3 and MoO2 by a facile and cost-effective method using extract of orange peel as a biological chelating and reducing agent for ammonium molybdate. Calcination of the precursor in air at 450 °C yielded the stochiometric MoO3 phase, while calcination in vacuum produced the reduced form MoO2 as evidenced by X-ray powder diffraction, Raman scattering spectroscopy, and X-ray photoelectron spectroscopy results. Scanning and transmission electron microscopy images showed different morphologies and sizes of MoOx particles. MoO3 formed platelet particles that were larger than those observed for MoO2. MoO3 showed stable thermal behavior until approximately 800 °C, whereas MoO2 showed weight gain at approximately 400 °C due to the fact of re-oxidation and oxygen uptake and, hence, conversion to stoichiometric MoO3. Electrochemically, traditional performance was observed for MoO3, which exhibited a high initial capacity with steady and continuous capacity fading upon cycling. On the contrary, MoO2 showed completely different electrochemical behavior with less initial capacity but an outstanding increase in capacity upon cycling, which reached 1600 mAh g−1 after 800 cycles. This outstanding electrochemical performance of MoO2 may be attributed to its higher surface area and better electrical conductivity as observed in surface area and impedance investigations.more » « less
-
Topology optimization is broadly recognized as a design approach to generate high-performance conceptual designs suitable for freeform fabrication, e.g., additive manufacturing. When other fabrication methods are considered, topology optimization must integrate manufacturing constraints. The integration of constraints for extrusion and casting has been addressed in the past by a few researcher groups. In this work, extrusion and casting constraints are revisited and extended to include plastic injection. The proposed method relies on the use of intersection planes and the definition of a parting line within the planes. The resulting topologies can be injected in a two-plate mold without the use of inserts. The implementation and results of the proposed approach are demonstrated in classic three-dimensional problems that include a cantilevered beam with different load conditions.more » « less
-
This work presents innovative origami optimization methods for the design of unit cells for complex origami tessellations that can be utilized for the design of deployable structures. The design method used to create origami tiles utilizes the principles of discrete topology optimization for ground structures applied to origami crease patterns. The initial design space shows all possible creases and is given the desired input and output forces. Taking into account foldability constraints derived from Maekawa's and Kawasaki's theorems, the algorithm designates creases as active or passive. Geometric constraints are defined from the target 3D object. The periodic reproduction of this unit cell allows us to create tessellations that are used in the creation of deployable shelters. Design requirements for structurally sound tessellations are discussed and used to evaluate the effectiveness of our results. Future work includes the applications of unit cells and tessellation design for origami inspired mechanisms. Special focus will be given to self-deployable structures, including shelters for natural disasters.more » « less
An official website of the United States government

Full Text Available